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Abstract. A filtering technique, for reducing the frequency  fluctuations of the laser 
entering  into  the two-way Doppler  tracking data measured  with two spacecraft, is 
discussed. This  method takes advantage of the sinusoidal behavior of the  transfer 
function of this noise source to  the Doppler observable, which displays sharp nulls 
at selected Fourier components. The non-zero gravitational wave signal  remaining at 
these frequencies makes spacecraft to  spacecraft laser Doppler  tracking  the equivalent 
of a xylophone interferometer detector of gravitational  radiation. 

The  data analysis technique presented in  this  paper could  be  implemented  with  the 
LISA mission at the Fourier frequencies where the  algorithm for unequal-arm  inter- 
ferometers fails to work, or as a backup  option  in case of failure of one of the  three 
spacecraft. 

INTRODUCTION 

Non-resonant detectors of gravitational  radiation  (with frequency content 0 < 
f < f ~ )  are essentially interferometers, in which a coherent train of electromagnetic 
waves  (of nominal frequency vo >> f ~ )  is  folded into several beams, and  at points 
where these  intersect  relative  fluctuations of frequency or phase are monitored 
(homodyne  detection). The observed low frequency signal  is due to frequency 
variations of the source of the beams about vo, to relative  motions of the source and 
the mirrors (or amplifying transponders) that do the folding, to temporal variations 
of the index of refraction along the beams, and, according to general relativity, 
to any time-variable gravitational fields present, such as the transverse traceless 
metric  curvature of a passing plane gravitational wave train. To observe these 
gravitational fields in this way, it is thus necessary to control, or  monitor,  the  other 
sources of relative frequency fluctuations, and, in the  data analysis, to optimally 
use algorithms based on the different characteristic  interferometer responses to 
gravitational waves (the signal) and to  the  other sources (the noise) [l]. 



Space-based interferometers, such as the coherent microwave tracking of inter- 
planetary spacecraft [2] and proposed Michelson optical  interferometers in planetary 
orbits (31, are most sensitive to milliHertz gravitatickal waves and have arm lengths 
ranging from lo6 to lo8 kilometers. 

In present single-spacecraft Doppler tracking observations many of the noise 
sources can  be  either reduced or calibrated by implementing appropriate microwave 
frequency links and by using specialized electronics, so the  fundamental  limitation 
is imposed by the frequency (timekeeping) fluctuations  inherent to  the reference 
clocks that control the microwave system. Hydrogen maser clocks, currently used 
in Doppler tracking  experiments, achieve their  best performance at  about 1000 sec- 
onds integration  time, with a  fractional frequency stability of a few parts  in 
This is the reason why these one-arm interferometers  in  space are most sensitive 
to milliHertz gravitational waves. This integration time is also comparable to the 
microwave propagation (or "storage") time 2 L / c  to spacecraft en  route  to  the outer 
solar system ( L  N 3AU) [4]. 

By comparing phases of split  beams  propagated along non-parallel arms, source 
frequency fluctuations can be removed and gravitational wave signals at levels many 
orders of magnitude lower can be  detected. Especially for space-based interferom- 
eters such as LISA, that use lasers with  a frequency stability of a few parts  in 

it is essential to  be able to remove these  fluctuations when searching for 
gravitational waves of dimensionless amplitudes less than  in  the milliHertz 
band. 

Since the armlengths of these space-based interferometers can be different by 
several percent,  the direct recombination of the two beams at a  photo  detector will 
not remove completely the laser noise. This is because the frequency fluctuations 
of the laser will be delayed by a different amount of time  into  the two different- 
length  arms.  In order to solve for this problem,  a technique involving heterodyne 
interferometry with unequal arm lengths  and independent readouts was proposed 
[5], which yielded data from which source frequency fluctuations were removed 
by many  orders of magnitude. The technique discussed in [5], however, is not 
effective at frequencies equal to integer  multiples of the inverse of the round trip 
light times in  the two arms.  This is because the transfer  functions of the laser 
fluctuations to  the Doppler tracking responses have sharp nulls at these frequencies. 
This implies that  the information about  the laser fluctuations provided by one of 
the two Doppler responses at these Fourier frequencies is lost,  and  the calibration 
of these  fluctuations at these frequencies can not be performed [5]. 

In this  paper we will  show,  however, that  it is still possible to make  measurements 
of gravitational  radiation  at  these frequencies by using only the  data generated by a 
single pair of spacecraft. In this sense we can regard spacecraft to spacecraft coher- 
ent laser tracking as a xylophone  interferometer detector of gravitational  radiation 
[6]. An outline of the paper is presented below. 

In section 11, after deriving the transfer functions of the noise sources affecting 
the two-way tracking data  set, we show that  there exist selected Fourier frequencies 
at which the transfer function of the laser frequency fluctuations into  the Doppler 



observable is essentially null. These are what we will  refer to as the frequencies of 
the xylophone. 

Since the xylophone frequencies are  equal to intgger multiples of the inverse of 
the round trip light time, any variation in the distance between the spacecraft 
implies changes in  these frequencies. For the selected LISA trajectory, we can 
successfully implement the xylophone technique by integrating  the  data for time 
intervals during which the variations of the xylophone frequencies are smaller than 
the frequency resolution bin. Estimates of the maximum  integration  times allowed 
by each of the  three pairs of spacecraft are presented. 

The noise levels, achievable with  this technique with two LISA spacecraft,  are 
presented in section 111. We find that a strain sensitivity of 2.5 x at  the 
frequency 3 x Hz can be reached when searching for sinusoids and by inte- 
grating  the  data for 10 days. At this  sensitivity level, gravitational  radiation from 
galactic  binary  systems should be observable. Our comments and conclusions are 
then presented in section IV. 

SPACECRAFT TO SPACECRAFT COHERENT LASER 
TRACKING AS A XYLOPHONE INTERFEROMETER 

Let  us consider two of the  three LISA spacecraft, each acting as a free falling 
test  particle, and continuously tracking each other via coherent laser light. One 
spacecraft, which we will  refer to as spacecraft a ,  transmits  a laser beam of nominal 
frequency uo to the  other spacecraft (spacecraft b) .  The phase of the light received 
at spacecraft b is used by a laser on board spacecraft b for coherent transmission 
back to spacecraft a. The relative two-way frequency (or phase) changes Au/uo, 
as functions of time,  are  then measured at a photo  detector.  When  a  gravita- 
tional wave crossing the solar system propagates through  this  electromagnetic link, 
it causes small  perturbations  in  Au/uo, which are  replicated three times in  the 
Doppler data with maximum spacing given by the two-way light propagation time 
between the two spacecraft. 

Let  us introduce  a  set of Cartesian orthogonal coordinates ( X ,  Y, 2) centered on 
one of the two spacecraft, say spacecraft a.  The 2 axis is assumed to be oriented 
along the direction of propagation of a  gravitational wave pulse, and ( X ,  Y )  are two 
orthogonal axes in  the plane of the wave (see Figure 1). In this coordinate  system 
we can write the two-way  Doppler response, measured by spacecraft a at  time t ,  as 
follows 

where h ( t )  is equal to 



Here h+(t) ,  h,(t)  are  the wave's  two amplitudes 3ith respect to  the ( X , Y )  axis, 
( 8 , 4 )  are  the polar angles describing the location of spacecraft b with  respect to 
the ( X ,  Y,  2) coordinates, p is equal to cos 8 ,  and L is the  distance between the 
two spacecraft (units in which the speed of light c = 1) .  

We have denoted  with C a ( t )  the random process associated  with the frequency 
fluctuations of the laser on board spacecraft a; B,,(t), &(t) are  the  joint effects of 
the noises from  buffeting by  non gravitational forces  on the  test masses on board 
spacecraft u and b respectively, T&(t)  is the noise due to  the optical  transponder 
on board spacecraft b, and Nz,( t )  is the noise from the  photo  detector on board 
spacecraft a where two-way phase changes are  measured. 

From Eq. (1) we deduce that  gravitational wave  pulses of duration longer than 
the round trip  light  time 2L have a Doppler response y(t) that,  to first order,  tends 
to zero. The tracking  system  essentially  acts as a pass-band device, in which the 
low-frequency limit f1 is roughly equal to (2L)" Hz, and the high-frequency  limit 
f H  is set by the shot noise at  the  photo detector [2,4]. 

In  Eq. (1)  it is also important  to  note  the characteristic time  signatures of the 
random processes C4(t) ,  B4(t) ,  and Bb(t). The  time  signature of the noise Ca(t) 
can  be  understood by observing that  the frequency of the signal  received at time t 
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FIGURE 1. Coherent laser light of nominal frequency vo is transmitted  from  spacecraft a to 
spacecraft b ,  and coherently  transponded back. The  gravitational wave train  propagates along 
the 2 direction,  and  the cosine of the angle between its direction of propagation and the laser 
beam is denoted by p .  



contains laser frequency fluctuations transmitted 2L seconds earlier. By subtracting 
from the frequency of the received signal the frequency of the signal transmitted  at 
time t, we also subtract  the frequency fluctuations\C,(t) with the  net result shown 
in Eq. (1) .  As far as the fluctuations  due to buffeting of the test-mass  on  board 
spacecraft u are concerned, the frequency of the received signal is affected at  the 
moment of reception as well as 2L seconds earlier. Since the frequency of the signal 
generated at  time t does not contain  yet any of these  fluctuations, we conclude that 
B,(t) is positive-correlated at  the  round  trip light time 2L. The  time  signature of 
the noise &(t) in Eq. (1) can be understood  through similar considerations [6] .  

Among all the noise sources included in Eq. ( l ) ,  the frequency fluctuations  due 
to  the lasers are expected to  be  the largest. A spack-qualified single-mode laser, 
such as a diode-pumped Nd:YAG ring laser of frequency uo = 3.0 x 1014 Hz and 
phase-locked to a Fabry-Perot optical cavity, is expected to have a spectral level 
of frequency fluctuations  equal to  about 1.0 x in  the milliHertz  band. 
Frequency stability  measurements performed on such a laser by McNamara et al. 
[7] indicate that a stability of about 1.0 x 10-14/& might be achievable in  the 
same frequency band. 

For the moment we will not  make  any  assumptions  on the frequency stability 
of the onboard  laser,  and return  to  this point later. We will focus instead  on  its 
transfer  function and on the transfer  function of the  gravitational wave signal as 
shown in Eq. (1). If we denote  with F ( f )  the Fourier transform of the  time series 
y(t), defined as 

~ ( f )  J'" y(t) dt , 
"-00 

then  Eq. (1) can be rewritten  in the Fourier domain as follows 

+ c(f) [e l r i fL  - 11 + g(f)  [e l r i fL  + 11 + 2 E ( f )  e 2ri f L  

+ T!%b(f) eZnifL + Fo(f) . (4) 

Note that  the transfer function of the noise C, is equal to zero at frequencies that 
are integer multiples of the inverse of the round trip light time, while the transfer 
function of the gravitational wave signal is  in general different from zero. By making 
coherent laser tracking measurements at these frequencies, we are  in fact  making 
xylophone interferometric measurements of gravitational waves. 

If  we define A f to be the frequency resolution of our data set  (equal to  the 
inverse of the integration time T ) ,  to first order in (Af L )  and  at  the xylophone 
frequencies f k  = k / 2 L ,  the response c ( f k )  can  be  approximated by the following 
expression [6] 



If we take L = 5 X lo6 km,  and  assume an integration time r of three  months as a 
numerical example, we find that  the amplitudes of the frequency fluctuations  due 
to  the laser are reduced at  the xylophone frequencres  by a  factor of 

2 A f  L = 4.1 X . 
C 

Eq. (5) shows some interesting, and somewhat peculiar,  properties of the remaining 
gravitational wave signal at  the xylophone frequencies. The response to a  gravita- 
tional wave pulse goes to zero not only when the wave propagates along the line 
of sight between the spacecraft ( p  = kl), but also  for directions  orthogonal to  it 
( p  = 0). This is consequence of the fact that for p = 0 the Doppler response y to 
a  gravitational wave  becomes a two-pulse response, identical to  the response of the 
laser noise, and therefore it cancels out  at  the xylophone frequencies. 

For sources randomly  distributed  in  the sky, as in  the case of a stochastic back- 
ground of gravitational waves, we can assume the angles (6,4) to  be  random vari- 
ables uniformly distributed over the sphere. Since the average over (6,4) of the 
response given in Eq. (4) is equal to zero, it follows that  the variance (denoted 
with E2( f ) )  of the  antenna  pattern is equal to [2] 

At the xylophone frequencies f k ,  C2 becomes the following monotonically increasing 
function of the integer IC 

2 4 q k )  = - - - 
3 ( r k ) 2  

ESTIMATED SENSITIVITIES 

In order to take  advantage of the xylophone technique it is necessary to integrate 
over a sufficiently long period of time.  This is because we want to reduce the noise 
due to  the laser to a level as close as possible to  that identified by the remaining 
noise sources at  the xylophone frequencies (see Eq. (5)). Since the xylophone 
frequencies change in time as the distance between the spacecraft varies, we can not 
coherently integrate our data indefinitely. Coherent integration can be performed 
only on a time scale r during which the variations of the xylophone frequencies are 
smaller than  the frequency resolution A f = 1 / ~ .  

In order to identify the maximum time of coherent integration fbr our xylophone 
interferometer  detector, we need to identify the  time dependence of the separation 
L ( t )  between two of the LISA spacecraft. From the definition of the frequencies 
f k ,  we can then derive the variation of the xylophone frequencies, b f k ,  in terms of 
the relative change in the distance between the spacecraft, dL( t ) /L (O) .  Since 6 f k  

is related to d L ( t )  by the following equation [6] 



it follows that  the maximum  time of integration  can  be  computed by requiring 6 f k  
to be smaller than  the frequency resolution A f = 1 / T .  

It has been calculated by  Folkner et ai. [8] that  the relative  longitudinal speeds 
between the  three pairs of spacecraft,  during  approximately the first year of the 
mission, can  be  written in the following approximated form 

where we have denoted  with (a ,  b) ,  ( a ,  c ) ,  (b ,  c )  the  three possible spacecraft  pairs, 
y!;) is a  constant velocity, and Ti,j is the period for the pair ( i , j ) .  In reference [8] 
it has also been shown that  the LISA trajectory can be selected in such a way that 
two of the  three  arms'  rates of change are essentially equal during the first year 
of the mission. This configuration is particularly  attractive because it implies an 
almost null variation in differential armlength for one of the  three interferometers. 
Following reference [8], we will assume Vi,:) = V(O) a,c # @), with Vi,:) = 1 m/s, 
& (0)  - - 13 m/s, Ta,b = Ta,, x 4 months,  and Tb,c x 1 year. With  these numerical 
values we can calculate the maximum  integration  times for different xylophone 
frequencies. The calculation is straightforward, and we will not go through it 
here [6]. The results of this analysis, however, indicate that  the  data from the 
two pairs of spacecraft, ( a , b ) ,  ( a , c ) ,  can be  integrated coherently at  the frequency 
f i  = 3 X Hz for about 10 days. A shorter  integration time of about 3 days is 
needed instead to make xylophone measurements at  the frequency 1.5 Hz. For the 
remaining pair of spacecraft,  due to  their larger relative  speed, we have found that 
coherent integration at f i  can be performed for about 6 days, while at 1.5 Hz the 
maximum  integration  time goes  down to  about 2 days. 

The numerical values of the maximum  integration times derived above allow us 
to  estimate,  at  the xylophone frequencies, the one-sided  power spectral  density of 
the noise affecting the  data set y. In what follows we will consider two spacecraft 
with  identical  optical  and mechanical payloads, and equal to those described in 
[3]. We will also assume the random processes associated with the noise sources 
affecting the  stability of the coherent one-way tracking data  to  be uncorrelated 

' with each other,  and their one-sided  power spectral densities to  be consistent  with 
those given  in reference [3]. Since our xylophone will be sensitive to  gravitational 
radiation at frequencies equal to or larger than  the inverse of the round trip light 
time ( c / 2 L  x 3 x Hz), the dominant noise  sources determining its  strain 
sensitivity will be  the photon-shot noise, and  the frequency fluctuations of the 
laser [3]. 

After taking into account Eq. (5), and the expressions of the one-sided power 
spectral  density for the shot-noise and  the frequency fluctuations of the laser given 
in reference [3], the one-sided  power spectral density Sy(f) of the noise in the 



response y, estimated in the frequency band of the xylophone,  can  be written as 
follows 

"1 

Sy(f) = lo-= f 2  + f " 2 / 3  + 6.3 x f-3*4] sin'(27rfL) , (11) 

In Figure 2 we have  plotted  this  function by assuming  an  integration time of 3 days. 
Note that, with  such an  integration  time,  the one-sided  power spectral  density of 
the laser noise is  reduced, at  the xylophone  frequencies, by a factor of (2Af LI2 = 
1.6 X lo-'. Since the function Sy(f) plotted  in  Figure 2 is monotonically  decreasing 
at  the xylophone  frequencies, we conclude that with such an  integration  time  the 
noise due  to  the laser  is  still the dominant one. 

The 3 days time interval implies a  variation of the largest of the xylophone fre- 
quencies smaller than  the frequency  resolution  bin. At smaller  xylophone  frequen- 
cies, however, the one-sided power spectral  densities  should  be  rescaled  according 
to  the  appropriate  maximum  integration times. For instance,  since at the frequency 
3 x Hz we can  coherently.integrate  the  data from two of the  three pairs of 
spacecraft for 10 days,  the one-sided'power spectral density at this frequency would 
be smaller than  the value shown in  Figure 2 by a factor (3/10)'. From the  estimate 
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FIGURE 2. The one-sided power spectral density of the  noise, S , ( f ) ,  entering into  the response 
y. The minima of S, have been estimated by assuming  an integration time of 3 days.  See text 
for explanation. 



of the one-sided power spectral  density of the noise  given in Figure 2, it is possible 
to calculate the root-mean-squared (r.m.s.) noise  level c r ( f k )  of the frequency fluc- 
tuations in the bins of width A f ,  around the frequkncies f k  (IC = 1,2 ,3 ,  ....). This 
is  given  by the following expression 

~ ( f k )  [ S , ( f k )  Af]1’2 , k = 1,2,3,  .... . 

This  measure of the Doppler sensitivity is appropriate for sinusoidal signals, such as 
those generated  during the coalescence of a  binary  system, while it over estimates 
the sensitivity to bursts  and  to a  stochastic background of gravitational  radiation. 
The  quantitative results implied by the formula given in Eq. (12) should  therefore 
be considered by keeping in  mind this observation. For a detailed and  quantitative 
analysis covering bursts  and  stochastic waveforms instead, the reader is referred to 

From Eqs. (5, 8) we derive that,  at 3 x Hz, the xylophone will have an 
r.m.s. strain sensitivity to sinusoids, averaged over an isotropic distribution of 
source directions, of about 2.6 x A binary  system  containing two 1.0 Ma 
stars, for instance, could radiate sinusoidally at f = 3 x Hz, and during 
a period of 17 days the frequency of the radiation would change by an amount 
smaller than  the frequency resolution of the  data. Since the Doppler data can be 
integrated  coherently for about 10 days at  the xylophone’s fundamental, we find 
that such a binary  system could be observed out to a  distance of about 3 kpc. 

P I  - 

CONCLUSIONS 

We have discussed a data analysis technique for performing searches of gravita- 
tional  radiation  in space with two spacecraft tracking each other  via coherent laser 
light. The main result of our analysis, deduced in Eq. (5), shows that we can re- 
duce, by several orders of magnitude,  the frequency fluctuations  introduced in  the 
Doppler data by the laser. This is achieved by making measurements at  the Fourier 
frequencies where the transfer  function of the laser fluctuations to  the Doppler ob- 
servable has sharp minima.  In  this respect spacecraft to spacecraft coherent laser 
tracking can  be regarded as a xylophone  interferometer detector of gravitational 
radiation. 

at  the frequency 3 x Hz can be  obtained  after coherently integrating  the two- 
way Doppler data for 10 days. At this  sensitivity level, gravitational  radiation from 
galactic coalescing binary systems should be observable. 

Spacecraft to spacecraft xylophone interferometric  measurements of gravitational 
radiation could be implemented with the LISA mission at  the Fourier frequencies 
where the algorithm for unequal-arm interferometers fails to work, or as backup 
option in case of failure of one of the  three  spacecraft. 

When searching for sinusoids, we have found that a  strain  sensitivity of 2.6 X 
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